21 research outputs found

    Shadow fading cross-correlation of multi-frequencies in curved subway tunnels

    Get PDF
    Radio propagation characteristics in curved tunnels are important for designing reliable communications in subway systems. In this paper, shadow fading is characterized, and cross-correlation property of shadow fading for different frequency bands is investigated based on empirical measurements. The measurements were conducted in two types of curved subway tunnels with 300 m and 500 m radii of curvatures at 980 MHz, 2400 MHz, and 5705 MHz, respectively. The impact of antenna polarization and propagation environment on shadow fading correlation at the receiver is evaluated. It is found that shadow fading with horizontal polarized antenna exhibits less correlation than with vertical polarized antenna. Strong independence of shadowing correlation and tunnel type is observed. Furthermore, a heuristic explanation of the particular shadowing correlation property in subway tunnel is presented

    Excess propagation loss for train-to-x communications in curved subway tunnels

    Full text link
    Wave propagation experiences the excess loss in curved tunnels, which is highly desired to involve in the network planning for train-to-x communications. Extensive propagation measurements are conducted in a curved subway tunnel. By subtracting the measured received power in the curved tunnel from the simulated reference power in the equivalent straight tunnel, the excess loss resulting from the tunnel curve is obtained. Finally, tables and figures are provided to quantitatively reveal how the radius of curvature and frequency influence the excess loss in subway tunnels

    Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Get PDF
    A design of a planar microstrip-fed ultrawideband (UWB) printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm) laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts

    Broadband radio communications in subway stations and tunnels

    Full text link
    Broadband radio communication systems are very important for railway traffic control systems and passengers network services. Nowadays, even though 4G LTE (Long Term Evolution) has deployed for commercial use with excellent results in open areas, it is still lack of knowledge regarding to how such broadband signals propagate inside complex environments with many complex structures that affect propagation such as subway tunnels and stations. For this reason, the aim of the presented measurements in this paper is to model the response of the broadband channel at 1000 MHz and 2450 MHz in the subway environments. These measurements focus on three types of scenarios: subway stations, straight tunnels and a train effect the signal. The results provide detailed information about the propagation channel, which can be useful to develop a broadband propagation model for underground communication systems

    Measurement and analysis of extra propagation loss of tunnel curve

    Get PDF
    Wave propagation experiences extra loss in curved tunnels, which is highly desired for network planning. Extensive narrow-band propagation measurements are made in two types of Madrid subway tunnels (different cross sections and curvatures) with various configurations (different frequencies and polarizations). A ray tracer validated by the straight and curved parts of the measuring tunnels is employed to simulate the reference received signal power by assuming the curved tunnel to be straight. By subtracting the measured received power in the curved tunnels from the simulated reference power, the extra loss resulting from the tunnel curve is extracted. Finally, this paper presents the figures and tables quantitatively reflecting the correlations between the extra loss and radius of curvature, frequency, polarization, and cross section, respectively. The results are valuable for statistical modeling and the involvement of the extra loss in the design and network planning of communication systems in subway tunnels

    Large-scale fading characterization in curved modern subway tunnels

    Full text link
    This paper presents extensive propagation measurements conducted in a modern arched tunnel with 300 m and 500 m radii of curvature with horizontal polarizations at 920 MHz, 2400 MHz, and 5705 MHz, respectively. Based on the measurements, statistical metrics of propagation loss and shadow fading in all the measurement cases are extracted. Furthermore, for each of the large-scale fading parameters, extensive analysis and discussions are made to reveal the physical laws behind the observations. The quantitative results and findings are useful to realize intelligent transportation systems in the subway system
    corecore